Just out - photoreceptors: We've examined the generality of the LOV (Light-Oxygen-Voltage) signaling model we first reported for the phototropin / AsLOV2 system (Harper et al. 2003, Freddolino et al. 2013). An analogous mechanism used is by EL222, a bacterial LOV-HTH DNA-binding protein (Nash et al. 2011). Inactive in the dark, EL222 undergoes light-dependent structural changes to bind DNA sites identified by genomic and selection methods (Rivera-Cancel et al. 2012, Zoltowski et al. 2013) to activate gene transcription in vivo. Recent engineering work from our group has extended the generality of this system to work in eukaryotic cells as well (Motta-Mena et al. 2014). Parallel studies on LOV-histidine kinases from E. litoralis (Corrêa et al., 2013) have uncovered regulatory mechanisms and downstream partners, revealing a stress response pathway conserved among bacteria.

Just out - bHLH/PAS: We've reported two approaches to regulate the HIF transcription factors with small molecules in living cells. One route exploits a large cavity within the HIF-2α PAS-B domain (Scheuermann et al. 2009, Key et al. 2009), providing a site for high-affinity ligands to trigger allosteric changes that disrupt HIF-2α/ARNT complexes (Scheuermann et al., 2013, Rogers et al., 2013). Another strategy targets all HIF isoforms (Guo et al. 2013) by disrupting interactions between the ARNT subunit and CCC coactivator proteins, including TACC3 (Partch and Gardner 2011).

for August 30, 2015, as found in HS Warren et al., Proc. Natl. Acad. Sci. USA 112(2015): E345 - online letter to editor:

"If one limited the analysis to common entities and tried to understand a station wagon by studying a motorcycle, one would learn something about wheels and spark plugs but have no idea about steering wheels, airbags and sunroofs, and the larger picture would be substantially missed."